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Abstract

This paper introduces an ensemble-based approach for
Visual Question Answering aimed at enhancing accessibil-
ity for individuals with vision impairments. By leveraging
large vision-language models, our method improves VOA
system performance for answering visual questions and im-
age classification. Through rigorous experimentation, we
demonstrate the effectiveness of our approach, contribut-
ing to advancements in assistive technologies and computer
vision research. On the 2024 VizWiz VQA Challenge, we
achieve an accuracy of 75.54.

1. Introduction

The Visual Question Answering (VQA)[[1] task involves de-
veloping algorithms that enable computers to understand
and answer questions about visual content. It requires sys-
tems to interpret both the image and the natural language
question about the content of the image to generate an ac-
curate response. VQA has diverse applications, from assist-
ing the visually impaired community to improving content-
based image retrieval systems.

The VizWiz-VQA[4] dataset originates from a natural
visual question-answering setting, in which each blind per-
son takes a photo and records the question, talking about it.
The challenge is that the photo can be deficient in quality or
lacking information, making the question unanswerable.

In previous VizWiz VQA Challenges, the common ar-
chitecture consisted of a vision encoder, a text encoder, and
a text decoder. The vision encoder will encode the image,
the text encoder will encode the input question, and the text
decoder will output the answer to the question.

The advance of large vision-language models ([2], [3l,
[[71, [8]) has brought a new approach to the VQA task. Us-
ing prompting, we can leverage their impressive capabilities
in perceiving texts and images to answer visual questions.
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2. Methodology

The overall architecture of our solution is depicted in Figure
Our approach is based on prompting the large vision lan-
guage models to output answers in a suitable format for the
challenge. Figure[T|shows an example of model interaction.
We experiment with various vision-language models, in-
cluding Qwen-VL-Chat [2]], LLaVA-1.5 [7], LLaVA-1.6
[8], and InternVL-Chat-V1.2 [3] models. Each model
is fine-tuned on the VizWiz dataset using parameter-
efficient fine-tuning [5] techniques such as low-rank adap-
tion (LoRA) [6]] and weight-decomposed low-rank adaption
(DoRA) [9]]. Additionally, to boost the accuracy on number-
related questions (e.g., counting objects), we employ a sub-
set of the VQAV2 datasets consisting of similar questions.
Each model is fine-tuned with various configurations
(e.g., model size, LORA/DoRA rank). Empirically, we find
that without ensembling, LLaVA-1.6 performs best, fol-
lowed by LLaVA-1.5, Qwen-VL-Chat, and InternVL-Chat-
V1.2 (see Table [I). Finally, we employ an ensemble ap-
proach to select the most frequent output of 33 fine-tuned
models, favoring better-performing ones: 16 LLaVA-1.6

IMAGE:

PROMPT: Can you tell me what this medicine is
please? When the provided information is
insufficient, respond with “unanswerable”.
Answer the question using a single word or
phrase.

MODEL: night time

Figure 1. An example of prompting a vision-language model to
answer a visual question
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Figure 2. Overall architecture of our proposed solution

models, 9 LLaVA-1.5 models, 6 Qwen-VL-Chat models,
and 2 InternVL-Chat-V1.2. Increasing the number of mod-
els beyond 33 does not lead to a significant improvement in
overall accuracy.

3. Results

Our ensemble model achieved an overall accuracy of 76.00
and 75.54 on the VizWiz test-dev and test-standard splits,
respectively. Further evaluation aimed at removing under-
performing models may improve overall results.

Model Overall Accuracy
Qwen-VL-Chat [2]] 69.25
LLaVA-1.5 [7] 70.71
LLaVA-1.6 [8] 72.76
InternVL-Chat-V1.2 [3] 66.99
Ensemble (4 models) 73.77
Ensemble (21 models) 75.53
Ensemble (33 models) 76.00

Table 1. Overall accuracy of various models on the VizWiz test-
dev split. The best accuracy of all training configurations is re-
ported for each single model.
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